Extensions 1→N→G→Q→1 with N=C24 and Q=Dic3

Direct product G=N×Q with N=C24 and Q=Dic3
dρLabelID
Dic3×C24192Dic3xC2^4192,1528

Semidirect products G=N:Q with N=C24 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C24⋊Dic3 = C24⋊Dic3φ: Dic3/C1Dic3 ⊆ Aut C241612+C2^4:Dic3192,184
C242Dic3 = C25.S3φ: Dic3/C2S3 ⊆ Aut C2424C2^4:2Dic3192,991
C243Dic3 = C22×A4⋊C4φ: Dic3/C2S3 ⊆ Aut C2448C2^4:3Dic3192,1487
C244Dic3 = C244Dic3φ: Dic3/C2S3 ⊆ Aut C24126+C2^4:4Dic3192,1495
C245Dic3 = C245Dic3φ: Dic3/C3C4 ⊆ Aut C24244C2^4:5Dic3192,95
C246Dic3 = C2×C23.7D6φ: Dic3/C3C4 ⊆ Aut C2448C2^4:6Dic3192,778
C247Dic3 = C25.4S3φ: Dic3/C6C2 ⊆ Aut C2448C2^4:7Dic3192,806
C248Dic3 = C22×C6.D4φ: Dic3/C6C2 ⊆ Aut C2496C2^4:8Dic3192,1398

Non-split extensions G=N.Q with N=C24 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C24.1Dic3 = C2×A4⋊C8φ: Dic3/C2S3 ⊆ Aut C2448C2^4.1Dic3192,967
C24.2Dic3 = A4⋊M4(2)φ: Dic3/C2S3 ⊆ Aut C24246C2^4.2Dic3192,968
C24.3Dic3 = C24.3Dic3φ: Dic3/C3C4 ⊆ Aut C2448C2^4.3Dic3192,84
C24.4Dic3 = C2×C12.D4φ: Dic3/C3C4 ⊆ Aut C2448C2^4.4Dic3192,775
C24.5Dic3 = C2×C12.55D4φ: Dic3/C6C2 ⊆ Aut C2496C2^4.5Dic3192,765
C24.6Dic3 = C24.6Dic3φ: Dic3/C6C2 ⊆ Aut C2448C2^4.6Dic3192,766
C24.7Dic3 = C22×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C2496C2^4.7Dic3192,1340
C24.8Dic3 = C23×C3⋊C8central extension (φ=1)192C2^4.8Dic3192,1339

׿
×
𝔽